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Abstract. Tropical mountainous regions are often identified
as landslide hotspots with growing population pressure. An-
thropogenic factors are assumed to play a role in the occur-
rence of landslides in these densely populated regions, yet
the relative importance of these human-induced factors re-
mains poorly documented. In this work, we aim to explore
the impact of forest cover dynamics, roads and mining activ-
ities on the characteristics and causes of landslides in the rift
flank west of Lake Kivu in the Democratic Republic of the
Congo (DR Congo). To do so, we compile a comprehensive
multi-temporal inventory of 2730 landslides. The landslides
are of different types and are grouped into five categories
that are adapted to study the impact of human activities on
slope stability: old (pre-1950s) and recent (post-1950s) deep-
seated landslides, shallow landslides, landslides associated
with mining and landslides associated with road construc-
tion. We analyse the landslides according to this classifica-
tion protocol via frequency–area statistics, frequency ratio
distribution and logistic regression susceptibility assessment.
We find that natural factors contributing to the cause of re-
cent and old deep-seated landslides were either different or
changed over time. Under similar topographic conditions,
shallow landslides are more frequent, but of a smaller size,
in areas where deforestation has occurred since the 1950s.

We attribute this size reduction to the decrease in regolith
cohesion due to forest loss, which allows for a smaller mini-
mum critical area for landsliding. In areas that were already
deforested in the 1950s, shallow landslides are less frequent,
larger and occur on less steep slopes. This suggests a com-
bined role between regolith availability and soil management
practices that influence erosion and water infiltration. Mining
activities increase the odds of landsliding. Landslides associ-
ated with mining and roads are larger than shallow landslides
but smaller than the recent deep-seated instabilities, and they
are controlled by environmental factors that are not present
under natural conditions. Our analysis demonstrates the role
of human activities on the occurrence of landslides in the
Lake Kivu region. Overall, it highlights the need to consider
this context when studying hillslope instability characteris-
tics and distribution patterns in regions under anthropogenic
pressure. Our work also highlights the importance of using
landslide classification criteria adapted to the context of the
Anthropocene.

1 Introduction

Tropical mountainous regions are often identified as land-
slide hotspots with particularly vulnerable populations
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(Vanacker et al., 2003; Broeckx et al., 2018; Froude and Pet-
ley, 2018; Emberson et al., 2020). Nevertheless, the current
knowledge on landslide processes in these regions remains
commonly limited as it is mostly derived from susceptibil-
ity models made at continental or global levels (Stanley and
Kirschbaum, 2017; Broeckx et al., 2018). Because they are
not based on detailed local inventories, such models do not
allow for properly considering region-specific characteristics
and causes of landslides (Depicker et al., 2020).

The growing demographic pressure and widespread land
use and land cover (LULC) changes are expected to increase
the frequency and impacts of landslides in tropical moun-
tainous regions, especially in rural environments (Vanacker
et al., 2003; Sidle et al., 2006; DeFries et al., 2010; Mu-
gagga et al., 2012; Guns and Vanacker, 2014; Froude and Pet-
ley, 2018; Depicker et al., 2021a; Muñoz-Torrero Manchado
et al., 2021). Deforestation and the associated loss of tree
roots usually lower the slope stability by decreasing the ef-
fective regolith cohesion and altering surface and subsurface
water drainage patterns, whose effects are particularly pro-
nounced on the occurrence of shallow landslides (Sidle and
Bogaard, 2016). Mining, quarrying and road construction al-
ter the environment and commonly increase landslide occur-
rence (e.g. Sidle et al., 2006; Brenning et al., 2015; Arca et
al., 2018; McAdoo et al., 2018; Vuillez et al., 2018; Muñoz-
Torrero Manchado et al., 2021; Tanyaş et al., 2022). How-
ever, the impact of these anthropogenic factors on landslide
processes (e.g. types, size, dynamics) depends on their timing
and their legacy effect. It also depends on other environmen-
tal conditions such as slope angle and lithology (Depicker et
al., 2021b). Developing further our understanding of land-
slides and their natural and human-induced causes is there-
fore needed, especially in regions such as the tropics where
the dearth of data is commonplace (Dewitte et al., 2022).

To achieve this, a detailed multi-temporal regional
landslide inventory spanning several decades is essential
(Guzzetti et al., 2012). New methodologies have been pro-
posed in the past years to automatically map landslides with
the use of, for example, earth observation data and machine
learning techniques (e.g. Prakash et al., 2021). However,
such automatic approaches only perform well with recent
landslides with a clear spectral signature. Furthermore, they
are not always well adapted to an accurate understanding of
the processes (Jones et al., 2021), especially when the land-
scapes are complex and highly influenced by human activi-
ties (Jacobs et al., 2018). The need for a visual identification
of landslides is even more important when the movements
that are studied are older and have occurred at an unknown
period, much before the availability of satellite images (Van
Den Eeckhaut et al., 2005; Pánek et al., 2021).

Historical aerial photographs offer the best opportunity at
the regional level to work across several decades, not only to
compile a landslide inventory but also to reconstruct LULC
changes (Glade, 2003; Guns and Vanacker, 2014; Shu et al.,
2019). It is complementary to very high-spatial-resolution
satellite images such as those available on Google Earth
(Fisher et al., 2012), which are widely used in the iden-
tification of landslides in many environments (Broeckx et
al., 2018; Pánek et al., 2021). Fieldwork is also essential in
order to validate observations made from the different im-
age sources, to discriminate between deep-seated and shal-
low processes, or to confirm depth estimates (Dewitte et
al., 2021). Field surveys also help to understand the role of
human activities on slope dynamics (Dewitte et al., 2021).
Overall, sufficiently long and precise multi-decadal records
of landslide activity, types and LULC are rare (e.g. Glade,
2003; Guns and Vanacker, 2014; Shu et al., 2019).

The aim of this work is to explore the role played by
natural and human factors on the occurrence of landslides
in a rural tropical mountainous region under high anthro-
pogenic pressure. More specifically, we are interested in the
rift flank west of Lake Kivu, a region in the Democratic Re-
public of the Congo (DR Congo) where recent studies have
shown that landslides are frequent and that recent defor-
estation has impacted the occurrence of shallow landslides
(Maki Mateso and Dewitte, 2014). We aim to (1) further
develop the existing landslide dataset and compile a com-
prehensive multi-temporal regional landslide inventory span-
ning several decades; (2) describe the general characteristics
of the landslides; and (3) analyse their causes according to
different controlling factors, with special attention to multi-
decadal forest cover dynamics. Historical aerial photographs
and field surveys are key sources of information in this study.

2 Environmental settings and current knowledge of the
landslide processes

The study is conducted in the rift flank west of Lake Kivu
in the DR Congo (Fig. 1a). It is one of the most seismic re-
gions of the African continent, crossed by active faults and
composed of six main rock types of varying age (Fig. 1b)
(Delvaux et al., 2017; Laghmouch et al., 2018). A signifi-
cant portion of the study area is made of lithologies from
the Archean, the Mesoproterozoic and the Neoproterozoic,
with various degrees of chemical weathering and fracturing
(Kampunzu et al., 1998). Lastly formed rocks are the old
Neogene basalts, highly weathered, that were deposited be-
tween 11–4 Ma. The presence of mineral resources (gold and
3T minerals – tin, tantalum and tungsten) favours the pro-
liferation of, often illegal, artisanal and small-scale mining
and quarrying (Van Acker, 2005; Geenen, 2012; Bashwira et
al., 2014). Industrial mining is not present in the region, and
there is no new road construction associated with it (Bash-
wira et al., 2014).
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Figure 1. (a) Relief and (b) geology of the study area. The study
area covers the districts of Kabare, Kalehe, Walikale, Masisi and Id-
jwi. Topography is derived from the Shuttle Radar Topography Mis-
sion (SRTM) 1 arcsec product (https://lpdaac.usgs.gov/products/
srtmgl1v003/, last access: 15 July 2020). Lithology and fault maps
are from Laghmouch et al. (2018).

The region has a tropical savannah/monsoon climate tem-
pered by its elevation (Peel et al., 2007). The natural vegeta-
tion is mainly montane forest, still preserved in the Kahuzi-
Biega National Park (Imani et al., 2017). Between the 17th
and 18th centuries, the first intense human disturbance oc-
curred as a result of deforestation (Nzabandora and Roche,
2015). The roads built during the late 19th and first half
of the 20th centuries played a key role in further expand-
ing the intense human disturbance (Aleman et al., 2018).
There has been significant deforestation and forest loss in
recent decades as well (Basnet and Vodacek, 2015; Depicker
et al., 2021a, b). Selective logging is done for energy needs,
house construction, furniture production and dugout canoes.
Clear-cutting, mostly small-scale, is associated with agricul-
ture, mining and quarrying activities, and road construction
(Musumba Teso et al., 2019; Drake et al., 2019). After defor-
estation, the land is often permanently converted to agricul-
tural land (cropland, grassland) or tree plantations (Depicker
et al., 2021a). In some places, however, natural regeneration
of the forest takes place (Masumbuko et al., 2012).

The study area (∼ 5700 km2) is one of the most densely
populated regions of the DR Congo with more than 200 in-
habitants km−2 living mainly from agriculture, mining and
quarrying activities (Linard et al., 2012; Michellier et al.,
2016; Trefon, 2016). This region plays a key role in the sup-
ply of food and charcoal to the smaller rural centres and to the
cities of Goma and Bukavu. Over the last decades, the pop-
ulation in both cities increased from a few tens of thousands

to more than 1 million inhabitants (Michellier et al., 2016).
The population growth in the study area was partly caused
by the influx of Rwandan refugees in 1994–1995, as well as
the growing artisanal mining industry that offers job oppor-
tunities (Bashwira et al., 2014; Van Acker, 2005; Butsic et
al., 2015). The road network is relatively limited (Fig. 1a).
Most roads are dirt roads and are poorly maintained, and
there are no built-up walls (concrete, gabions) to stabilise the
cut slopes.

A first preliminary inventory of a few hundred landslides
showed that the landslide processes are diverse and that their
impacts on rural development can be high (Maki Mateso and
Dewitte, 2014). The inventory over the North Tanganyika–
Kivu rift region (hereafter called the NTK rift) of which our
study area is a subregion was further expanded by Depicker
et al. (2020) through the use of Google Earth imagery. This
inventory consisted of shallow and deep-seated landslides
and did not distinguish for landslide susceptibility type. De-
picker et al. (2020) showed that, in addition to slope angle,
land cover is a key landslide predictor in the NTK rift region.
A more detailed investigation of the annual evolution of the
forest cover over the last 20 years showed that deforestation
increases the erosion due to the occurrence of new shallow-
landslide erosion two to eight times during a period of ap-
proximately 15 years before it eventually falls back to a level
similar to forest conditions (Depicker et al., 2021b). A cat-
alogue of > 150 accurately dated landslide events, i.e. land-
slides that can be clearly associated with a common well-
defined triggering rainfall event over the same area, was com-
piled for the NTK rift for the last 2 decades. It allowed for
demonstrating the role of rainfall seasonality on the occur-
rence of new landslides (Monsieurs et al., 2018b; Dewitte
et al., 2021). Some landslide events consist of clusters of
several hundred shallow slope failures. The spatial extent
of such clustered events can be larger than 10 km2. A few
events like these occur during each wet season (Depicker et
al., 2020; Dewitte et al., 2021). They are commonly associ-
ated with particularly intense convective rainfall (Monsieurs
et al., 2018b). None of the dated landslide events were trig-
gered by earthquakes (Dewitte et al., 2021). This does not
discard the role of earthquakes in triggering landslides in the
region but instead reminds us that the return period of earth-
quakes with a magnitude large enough to trigger slope insta-
bilities can be much longer than a few decades (Delvaux et
al., 2017). Their potential impact, rather localised compared
to that of climatic drivers, can be inexistent during a narrow
time window of observation (Dewitte et al., 2021; Depicker
et al., 2021b).

Landslides can also occur due to rock weathering and re-
golith formation (Dille et al., 2019). In other words, the long-
term evolution of these preconditioning drivers alone can ex-
plain that a slope can also fail without any apparent trigger.
This implies that the many landslides that occur in isolation
of other events must be interpreted with care in terms of ori-
gin. For these features, it is not clear from a visual analysis
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of the satellite images whether they can be directly linked to
a direct trigger. In addition, many landslides occur in isola-
tion along roads (Dewitte et al., 2021). Some of the larger,
historical landslides (i.e. landslides that do not appear active
in our oldest source of information) are probably more than
10 000 years ago (Dewitte et al., 2021).

3 Material and methods

3.1 Landslide inventory

The landslide inventory is a significant update of the in-
ventory compiled by Depicker et al. (2020) who used only
Google Earth imagery for mapping the features whatever
their type; age; and rainfall, seismic or non-triggered ori-
gin as explained in Sect. 2. Since the focus of Depicker et
al. (2020) was to study landslides over a much larger region
than the one of the present research, their inventory was per-
formed not only during a limited search time on our study
area but also without a field survey. Moreover, in our re-
search, we differentiated between types and timing of land-
sliding as these are key elements to consider to differentiate
between natural and human-induced landslides (Hungr et al.,
2014; Slide and Bogaard, 2016). In order to propose a land-
slide classification system adapted to our research objective,
we strongly relied on three image products.

– A careful and detailed 3D (elevation exaggeration of
1) visual interpretation of Google Earth images from
2005 to 2019 provides complete coverage of the region
at very high spatial resolution (∼ 0.5 m), often multi-
temporal.

– The interpretation of two hillshade images is derived
from a TanDEM-X (TerraSAR-X add-on for Digital El-
evation Measurement) digital elevation model (DEM)
provided at 5 m resolution and covering a large part
of the region (see Albino et al., 2015, and Dewitte et
al., 2021, for technical explanation on the production of
the DEM). Despite some artefacts present in the DEM
(Albino et al., 2015), this resolution allows for visually
identifying geomorphological features relevant for char-
acterising landslide processes (Dewitte et al., 2021).
The hillshade images were produced with a sun eleva-
tion angle of 30◦ and sun azimuth angle of 315◦ and
45◦.

– The stereoscopic analysis of historical panchromatic
photographs is acquired during the 1955–1958 period
at a ∼ 1/50 000 scale (i.e. about 1 m spatial resolution
on the ground). The photographs are conserved at the
Royal Museum for Central Africa (RMCA, Belgium).

The historical aerial photographs allowed for differentiating
between old deep-seated landslides (i.e. landslides with an

unknown time of origin and already present on the pho-
tographs) and recent deep-seated landslides that have oc-
curred during the last 60 years (i.e. after the acquisition of
the photographs). The aerial photographs were not used for
mapping shallow landslides since this inventory would be
biased. Indeed, the spatial resolution of the photographs is
twice lower than that of the images in Google Earth. Fur-
thermore, the photographs provide a single temporal cover,
whereas the multi-temporal Google Earth images are com-
posites over 13 years, i.e. the age difference between the
oldest and youngest image (e.g. Minova, Kalehe, Matanda
in Fig. 1).

The estimation of the depth of a landslide is important
when the role of LULC is to be considered; shallow land-
slides are much more sensitive to changes in vegetation char-
acteristics than deep-seated landslides (Sidle and Bogaard,
2016). In the literature, a landslide is usually defined as shal-
low when the depth of its surface of rupture ranges between
2 and 5 m (Keefer, 1984; Bennett et al., 2016; Sidle and Bo-
gaard, 2016). Here, landslides with a depth of < 5 m were
considered shallow. This criterion is based on the numer-
ous field observations in the region that show that regolith
can easily develop over a depth of several metres and that
trees often show deep rooting systems. Following the ap-
proach of Depicker et al. (2020) and Dewitte et al. (2021),
the distinction between deep-seated and shallow landslides
was made by visually estimating the relative landslide depth
from Google Earth and the 5 m resolution TanDEM-X hill-
shade images. Extensive in situ field observations of several
hundred recent landslides where then carried out to validate
the assessment. The landslides occurring in mining and quar-
rying sites were all classified as mining landslides. Specific
attention was also given to the landslides occurring along
roads. Mining and road landslides are assumed to be related
to important anthropogenic changes in the topography. Once
they have occurred, field observations show that these land-
slides are commonly reworked and often further excavated.
Therefore, for these two types of landslides, their depth was
not assessed.

Six field surveys were conducted over the period 2016 to
2019 to validate the landslide inventory and get extra infor-
mation on the landslide timing and their causes and triggers.
Additional landslides identified only in the field were not
considered in the analyses as they would bias the regional
landslide distribution. The work was carried out by selecting
representative areas with various types of landslides and ar-
eas with fewer or no landslides. These areas, which cover a
total of ∼ 20 % of the region, were selected based on differ-
ent landscape characteristics (lithology, slope, LULC) while
taking into account accessibility and safety issues that pre-
vent access to many places (Jaillon, 2020). We also used
information from media and grey literature (student theses,
field reports from local research, publications from academic
institutions and the civil protection authorities).
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The frequency of landslide surface area distributions were
analysed to check the completeness of the inventory and also
enable comparison with other inventories in different envi-
ronments. If the frequency–area density can be properly fit-
ted to an inverse gamma (0) distribution, it is considered rep-
resentative of the study area (Malamud et al., 2004). A bad fit
could suggest that the inventory is biased and/or incomplete.
Indeed, the use of several data sources in the inventory could
bias the distribution of landslides, especially bearing in mind
the limitations related to the interpretation of satellite images
(Guzzetti et al., 2012). We performed this analysis separately
for five categories of the inventory considered together or
in isolation: all landslides, old and recent deep-seated land-
slides, shallow landslides, mining landslides, and road land-
slides (see Sect. 3.1). The analysis of the frequency–area
distributions for the different shallow-landslide populations
defined according to the LULC and its dynamics was also
used to infer about differences in environmental characteris-
tics and slope failure mechanisms (Malamud et al., 2004; Van
Den Eeckhaut et al., 2007; Guns and Vanacker, 2014; Tanyaş
et al., 2018). Boxplots complemented the shallow-landslide
area analysis.

The extent of the study area is relatively small when con-
sidering regional climatic characteristics, and the time win-
dow of the shallow-landslide inventory built from Google
Earth imagery is limited to a few years. Therefore, the lo-
cation and spatial properties (areal extent, number of occur-
rences) of a rainfall-triggered landslide event forming a clus-
ter of slope failures depends strongly on the stochastic na-
ture (location, extent and magnitude) of the triggering rain-
fall event and less on local terrain conditions. The considera-
tion of all landslides of such a cluster could bias the analysis
by giving an excessive weight to the local terrain conditions
(Depicker et al., 2020). Thus, for the shallow-landslide sus-
ceptibility analysis (see Sect. 3.2), we retained a maximum
of 30 landslides per cluster, randomly sampled in order to
strengthen the statistical analysis and avoid overfitting. The
choice of this selection is also guided by the concern to have
at least the minimum of data required for training and vali-
dating the susceptibility models (Depicker et al., 2020). For
the inverse 0 analysis, those landslides selected per cluster
and other isolate landslides are called a distribution minus
event.

3.2 Multi-decadal forest dynamics

In the study area, the agricultural land use is complex (mul-
tiple cropping, multi-layer farming) and highly dynamic due
to crop rotations and associations, shifting cultivation, and
the bimodal annual rainfall pattern (Heri-Kazi and Bielders,
2021b). Detailed regional land use mapping serving as an in-
put variable in our susceptibility for shallow landslides and
their distribution analysis (see Sect. 2.3) is therefore not fea-
sible (e.g. Jacobs et al., 2018), which is an approach that dif-
fers from what can commonly be done in non-tropical envi-

Figure 2. Forest cover dynamics over the last 60 years. (a) For-
est cover in 1955–1958 and 2016. (b) Areas of forest cover change
between 1955–1958 and 2016. Details for the images used in this
figure are in Table 1.

ronments (e.g. Chen et al., 2019; Shu et al., 2019). However,
the dynamics of the forest can be better constrained. Here,
to complement the year-to-year analysis conducted by De-
picker et al. (2021b; see Sect. 2.1) that focused on the impact
of deforestation on shallow landslides over the last 20 years,
we reconstructed the forest dynamics over the last∼ 60 years
(Fig. 2). We used the 1 m resolution orthomosaic generated
from the RMCA’s aerial photographs of the years 1955–1958
(Depicker et al.,2021a), with these photographs being the
only existing pre-satellite-era source of information. The for-
est areas were delineated visually. The 2016 forest cover was
extracted from the continental ESA Climate Change Initia-
tive (CCI) land cover model which is available at a 20 m
resolution (ESA, 2016). This satellite-based product has an
accuracy of roughly 86 % in the region and has demonstrated
its relevance in another study on landslides (Depicker et al.,
2021b). Note also that between 2016 and 2019, i.e. the date
that corresponds to the most recent images in Google Earth
used for the inventory, very few forest cover changes were
observed.

Knowing that the natural vegetation of the study area is
forest (Sect. 2), in 1955–1958, 42 % of the territory was al-
ready deforested (Fig. 2a). From 1955–1958 to 2016, the loss
of forest continued, with the forest cover decreasing from
58 % to 24 % of the study area. The area affected by the forest
loss over the last 60 years is larger than the remaining perma-
nent forest (Fig. 2b). The comparison of forest areas between
1955–1958 and 2016 allows for considering four classes for
the forest dynamics.
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– Permanent forest corresponds to forest areas that are
present at both dates.

– The forest loss class corresponds to forests present in
1955–1958 that have disappeared in 2016. Since it is
impossible to identify for each portion of the landscape
the exact cause of forest loss, this class contains a mix
of various forest management practices and other causes
of forest cut/removal.

– The forest gain class represents the new forest that has
appeared since 1955–1958. Similarly, the causes asso-
ciated with the occurrence of new forest are not exactly
known, with afforestation and natural forest regenera-
tion certainly being processes at play.

– Permanent anthropogenic environment (e.g. cropland,
grassland, built-up land) means that the landscape was
not forested in both dates, and it is assumed that it re-
mained so during that period.

3.3 Landslide susceptibility and distribution analysis

Landslide susceptibility approaches are commonly used to
determine the factors that control the occurrence of land-
slides. There are numerous approaches which are more or
less complex in terms of modelling implementation, data
needs and result interpretability (Reichenbach et al., 2018).
Since our study aims neither to develop a new methodology
nor to show the ability to use complex methods; we relied
on a logistic regression approach (Hosmer and Lemeshow,
2000) to determine the predictor variables related to the oc-
currence of the different types of landslides. Logistic regres-
sion is a straightforward method demanding relatively few
data that has been widely used (Reichenbach et al., 2018)
and that allows for a rather easy interpretation of the results
(e.g. Jacobs et al., 2018; Depicker et al., 2020).

Frequency ratio (Lee and Pradhan, 2007) models were
used as a simpler but complementary approach to better un-
derstand the role of each variable in the contribution of the
landslide occurrence in terms of process characterisation. For
example, when slope angle is highlighted by a logistic regres-
sion model as a significant variable, we still remain unaware
of the types of slopes that actually influence the occurrence
of landslides.

The analysis was carried out according to the five cate-
gories of landslides defined in Sect. 3.1. The analysis was
done at the scale of one point (pixel) per landslide to avoid
spatial autocorrelation (e.g. Jacobs et al., 2018; Kubwimana
et al., 2021). The point is manually positioned in the cen-
tral region of the visually delineated landslide’s source area
to represent as close to reality as possible the conditions that
caused its occurrence. In doing so we also avoid the selection
of the highest point of the landslide that rarely corresponds to
its initiation point (Dille et al., 2019). As stressed by Tanyaş

et al. (2018), landslides grow with time. Therefore, consider-
ing one pixel per landslide instead of its whole source area al-
lows for avoiding a temporally induced bias. The digital ele-
vation model used for the analysis (see Table 1) is posterior to
the occurrence of the old deep-seated landslides. Therefore,
for deep-seated landslides, a point outside the source area
where topography does not appear to have been disturbed
by the instability is visually determined for the calculation of
the slope associated with the landslide origin. Calculating the
slope values at the level of the landslide source for this type
of landslide would give values that are the consequences of
landslides rather than the causes of their origin.

3.3.1 Predictor variables and landslide causes

The purpose of this research is to examine the predictor vari-
ables (see Fig. S1 for the predictor variables not displayed in
the main text) that contribute to the susceptibility of the dif-
ferent landslide categories. As such we mainly investigate the
causes of the landslides. Nevertheless, the predictors high-
lighted by the susceptibility analysis may also help to discuss
triggering conditions since the tectonic, landscape and cli-
mate of a region are commonly interlinked (Whipple, 2009;
Whittaker, 2012).

We used eight predictors that can be considered natu-
ral factors that cause landslide occurrence (Table 1): eleva-
tion, slope angle, planar curvature, profile curvature, topo-
graphic wetness index (TWI), slope aspect, lithology and
distance to faults. Although these predictors are commonly
used (Reichenbach et al., 2018), it is worth specifying that,
here, elevation is used as proxy for local climatic conditions,
namely orographic rainfall and the probability of convective
rainfall/thunderstorms, as the resolution of regional-climate-
derived products is too low (at least 2.8 km) to accurately
capture at the scale of our study area the effect of elevation on
rainfall (Monsieurs et al., 2018a; Van de Walle et al., 2020).
Distance to faults is used to determine the possible contri-
bution of seismic activity in the occurrence of deep-seated
landslides not only as a triggering factor (e.g. Keefer, 1984)
but also as a measure of rock weathering (e.g. Vanmaercke
et al., 2017). Using the fault pattern is the most appropriate
option to tackle the seismic zonation context since the most
detailed seismic hazard assessment for this part of the con-
tinent is at a spatial resolution of 2.2 km, i.e. at a resolution
that is too coarse for our study (Delvaux et al., 2017).

Besides the natural factors, we identified two anthro-
pogenic predictors (Table 1): forest dynamics and distance
to roads. For the forest dynamics, we considered the four
classes identified in Fig. 2. The main roads were retrieved
from OpenStreetMap. Good knowledge of the study area and
the analysis of the very high-resolution Google Earth im-
ages allowed us to verify the high accuracy of the road net-
work proposed by OpenStreetMap. Using the historical pho-
tographs, we observe that the main roads date back to the
colonial times and that no major changes in the network have
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Table 1. Landslide predictor variables used for the susceptibility and frequency ratio analyses and the ancillary data from which they are
derived.

Variable Type Source

– Elevation (m) Continuous NASA Shuttle Radar Topography Mission (SRTM) Version 3.0
– Slope angle (◦) Continuous global 1 arcsec data (temporal extent: 11–21 Feb 2000),
– Profile curvature (m−1) Continuous https://lpdaac.usgs.gov/products/srtmgl1v003/
– Plan curvature (m−1) Continuous (last access: 15 July 2020)
– Topographic wetness index Continuous
– Slope aspect (◦) Categorical
• North Dummy
• Northeast Dummy
• East Dummy
• Southeast Dummy
• South Dummy
• Southwest Dummy
•West Reference*
• Northwest Dummy

– Lithology Categorical Geological map of the Kivu at 1/500 000 scale
• Old basalts Dummy (Laghmouch et al., 2018)
• Black shales and tillite Dummy
• Granites (mica and leucogranites) Dummy
• Granitic rocks (rhyolite) Reference∗

• Pelites and quartzopelites Dummy
• Gneiss and mica schists Dummy

– Distance to faults (m) Continuous

Distance to roads (m) Continuous https://www.openstreetmap.org/history#map=9/-2.0475/28.5535 (last
access: 21 Febuary 2021)

– Forest dynamics between 1955–1958 and 2016 Categorical Forest cover in 2016 (ESA, 2016;
•Permanent forest Reference∗ http://2016africalandcover20m.esrin.esa.int/viewer.php,
• Forest loss Dummy last access: 15 July 2020)
• Forest gain Dummy Forest cover in 1955–1958: historical aerial photographs and
• Permanent anthropogenic environment Dummy derived orthomosaics from the RMCA (see Sect. 2.1)

∗ Each dummy variable is compared with the reference group.

occurred over the last 60 years. The few recent landslides that
are observed in the field along these roads confirm the as-
sumption that the direct impact of the main roads on the oc-
currence of recent landslides is currently limited. These land-
slides are clearly linked to the road cut topography, i.e. topo-
graphic conditions that cannot be constrained at the resolu-
tion of the SRTM elevation data (1′′ or roughly 30 m). They
are often of very limited size, i.e. at a size that is too small
to be features that can be identified in Google Earth in a con-
sistent manner. For our study, the distance to roads is taken
as a proxy for human settlement, trail density, and intensity
and diversity of agricultural practices. Since motorised trans-
portation means are very limited in the region, the population
growth, the expansion of villages and the agricultural activi-
ties are highly associated with the main road networks.

Prior to analysis, the predictor variables that were not to-
pographically derived were resampled at the resolution of
the SRTM DEM data; a resolution that is commonly used
in many susceptibility analyses (Reichenbach et al., 2018).

Furthermore, in a region of Uganda located in a relative
proximity, Jacobs et al. (2018) evidenced that the 1 arcsec
SRTM DEM clearly outperforms higher-resolution products
derived, in that specific case, from TanDEM-X. The asso-
ciation between the dependent variable and each predictor
variable was tested using the Pearson χ2 test at a 95 % level
of confidence (e.g. Van Den Eeckhaut et al., 2006). The pre-
dictors were tested for multicollinearity, with variables with
a variance inflation factor (VIF) of > 2 being excluded from
the analysis (e.g. Van Den Eeckhaut et al., 2006). The flat ar-
eas (slope angle < 1◦) that are spread across the region were
not excluded from the analysis since their total extent is lim-
ited and their impact on the inflation of susceptibility model
performance would be minor (Brenning, 2012).

For the analysis of deep-seated landslides, the predic-
tor variables associated with anthropogenic activities were
excluded. For the shallow landslides, the variable of dis-
tance to faults was also excluded. As explained earlier, the
shallow-landslide inventory represents a narrow time win-
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Figure 3. (a) Landslide inventory obtained from the image analysis and extent of the forest cover in 2016 (after ESA, 2016). Numbers
represent clusters of shallow landslides that are associated with heavy rainfall events dated in ascending order from oldest to most recent.
(b) Additional landslides identified only in the field.

dow of observation. As such, the spatial distribution of the
shallow landslides could be biased by the stochastic pattern
of the recent heavy rainfall events and anthropogenic dis-
turbances rather than reflecting the longer-term impact of
weathering conditions associated with seismicity (Depicker
et al., 2021b).

3.3.2 Logistic regression

Logistic regression is used to describe the relationship be-
tween a binary dependent variable (the presence or absence

of landslides) and one or more independent predictor vari-
ables (Hosmer and Lemeshow, 2000). Hence, the logistic
regression requires not only landslide data but also non-
landslide data. We sampled this non-landslide data by gener-
ating a number of random points that is equal to the number
of landslides in the inventory in order to avoid prevalence
(Hosmer and Lemeshow, 2000). Non-landslide points were
randomly generated outside a 40 m buffer zone around land-
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slide areas. The basic equation for logistic regression is

log
(

P

1−P

)
= α+

n∑
i=1

βiXi, (1)

where P is the likelihood of landslide occurrence and takes
values between 0 and 1, α is the intercept of the model, Xi
represents the ith of n predictors, and βi is the accompanying
coefficient that has to be fitted to the data.

Calculations were performed in an RStudio environment
(version 1.4.1717) with LAND-SE software (LANDslide
Susceptibility Evaluation; Rossi and Reichenbach, 2016). In
order to be considered in the final logistic regression equa-
tion, continuous variable coefficients needed to be significant
at the 95 % level of confidence (e.g. Jacobs et al., 2018). For
categorical variables, as soon as one dummy variable was
significant, all other dummy variables were included in the
model (e.g. Depicker et al., 2020). The quality of the mod-
els was judged by (i) the prediction rate (e.g. Depicker et
al., 2020); (ii) a visual plausibility inspection of the suscep-
tibility maps after reclassifying each map into four classes
of increasing susceptibility that cover 40 %, 30 %, 20 % and
10 % of the study area; and (iii) considering the area un-
der the curve (AUC) of the receiver-operating-characteristics
(ROC) curve. The AUC values vary between 0 and 1 and can
be interpreted as the model’s capacity of differentiating be-
tween landslide and non-landslide locations. An AUC of 0.5
shows that the model performance is equivalent to random
classification, while an AUC of 1 indicates a perfect classifi-
cation (Hosmer and Lemeshow, 2000). Training and valida-
tion datasets were taken in the proportions of 70 % and 30 %,
respectively (Broeckx et al., 2018; Fang et al., 2020).

We assessed the importance of each individual predictor
for the logistic regression in two ways. First, we calculated
the AUC for landslide susceptibility models that only relied
on the considered predictor to assess the extent to which this
predictor can be used to differentiate between landslide and
non-landslide locations. Although this is quite a straightfor-
ward approach that does not consider the possible interplay
among predictor variables, this allows for a first quantitative
insight into the importance of each variable to the suscepti-
bility models (Depicker et al., 2020). A second way to deter-
mine the impact of the predictors was the analysis of the odds
ratio (OR). The OR of a predictor expresses how a change of
a predictor value translates into an increase/decrease in the
odds of landsliding, whereby the odds of landsliding is calcu-
lated as P

1−P (see Eq. 1). The ORi of predictor i is calculated
as

ORi = eβiδi , (2)

whereby βi is the coefficient of predictor i and δi is the in-
crease in predictor i. For continuous variables an arbitrary
but realistic value for δi is chosen. For the dummy variables,
δi equals 1. For the categorical variables, the OR for each
dummy reflects an increase or decrease relative to the refer-
ence variable (Kleinbaum and Klein, 2010).

3.3.3 Frequency ratio

The frequency ratio model considers each landslide predictor
variable individually and classifies its values into a set of bins
to indicate for each bin of the predictor variable the probabil-
ity of occurrence of a landslide (Lee and Pradhan, 2007; Lee
et al., 2007; Kirschbaum et al., 2012). The frequency ratio is
calculated as

Frcb =
acb/aT

Acb/AT
, (3)

where Frcb is the frequency ratio value for bin b =

(1,2, . . .,n) of predictor variable c = (1, 2, . . ., m), acb is the
cumulative landslide area within bin b of predictor c, aT is
the cumulative landslide area in the entire study area, Acb is
the area attributed to bin b of predictor c and AT is the total
extent of the study area.

4 Results

4.1 Landslide inventory

Overall, we mapped 2730 landslides (Fig. 3a; Table 2). The
landslides are diverse in terms of size, age and type (Fig. 4).
The inventoried landslides cover∼ 3 % of the study area. The
largest landslide is an old and deep-seated complex move-
ment (426 ha), while the smallest detected landslide is a shal-
low debris avalanche (16 m2). The landslides are grouped
into five categories (Fig. 3a; Table 2).

– Old deep-seated landslides represent 45,5 % of the
inventoried landslides and cover 93 % of the total
landslide-affected area. Most of these landslides are of
the rock slide type. Rock avalanches, although much
less frequent, are also present. Rockfalls can be asso-
ciated with the presence of the main scarps of these old
landslides. However, they have not been considered in
the inventory and the subsequent analysis.

– Shallow landslides represent 40.4 % of inventoried
landslides but represent only 2.7 % of the total af-
fected area. Most of these landslides are of the de-
bris avalanche type. These landslides are all recent and
clearly associated with rainfall. The landslides clustered
events all fall into this category.

– Recent deep-seated landslides represent a small per-
centage of landslides (5.8 %) but cover an area (2.9 %)
similar to that of shallow landslides. Most of the land-
slides are of the slide type. Their trigger, when identi-
fied, is associated with rainfall.

– Mining landslides (that also include quarrying land-
slides) represent 5.6 % of the inventoried landslides and
cover 1.2 % of the total landslide-affected area.
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Figure 4. Examples of landslide types (according to Varnes’ new classification; Hungr et al., 2014). (a) Cluster of recent debris avalanches
and debris flows triggered during an intense rainfall event (25 October 2014) in the vicinity of Kalehe (2.041◦ S, 28.874◦ E); the image
illustrates a part of the landslides clustered around event 2 shown in Fig. 3a. The source areas of these shallow landslides are identified.
(b) Old earthflow (2.053◦ S, 28.660◦ E). (c) Old rock slides/rock avalanches/path-dependent rockfalls (2.007◦ S, 28.708◦ E). (d) Recent
deep-seated rotational slide that occurred in 2002 (1.530◦ S, 28.708◦ E). (e) Recent deep planar slide that occurred in 1994 and created
a dammed lake (1.521◦ S, 28.977◦ E). (f) Recent slides, flows and avalanches associated with mining activities that occurred from 2013
onwards (1.563◦ S, 28.885◦ E).

– Regarding road landslides, the inventory shows that 115
landslides are located within 50 m of roads: 60 of these
landslides are shallow, 13 are recent and deep-seated,
35 are old and deep-seated, and 7 are mining land-
slides. Only the shallow and recent deep-seated land-
slides were classified as road landslides, i.e. a total of 73
landslides. The old deep-seated landslides located close
to roads were retained in the old deep-seated landslide
category because their timing is likely to precede road
construction. The mining landslides were also retained
in their respective category.

We identified several shallow-landslides clustered events.
One of the events is related to the Kalehe rainstorm of 25 Oc-
tober 2014 (Fig. 3a: event 2; Fig. 4a) reported by Maki
Mateso and Dewitte (2014). This rainfall triggered 634 shal-
low landslides, 346 of them being connected to talwegs and
providing materials to 17 debris flows. A total of 10 de-
bris flows were particularly destructive and deadly when
they reached villages on the shores of Lake Kivu (Maki
Mateso and Dewitte, 2014). In this area, 14 shallow land-
slides present on Google Earth images before this event

were reactivated. Field observations and interviews with lo-
cal populations confirmed that the shallow landslides that are
not associated with these clustered events are also rainfall-
triggered.

Landslide mapping was largely done using Google Earth,
with the TanDEM-X hillshade images being useful to con-
firm the identification of about one-fifth of the old deep-
seated landslides (Table 2). Fieldwork carried out to vali-
date 786 landslides (25 % of the inventory) showed that they
were identified with a precision (TP/(TP+FP) of 96 % (Ta-
ble 3). Old deep-seated landslides and shallow landslides
were mapped with the highest precision. Mining landslides
were mapped with a lower precision due to the difficulty
of differentiating between landslide processes and anthro-
pogenic soil disturbance in Google Earth imagery. The field
validation allowed for also mapping an extra 126 landslides
(Fig. 3b) that could only be identified in the field (Table 3).
For the old deep-seated landslides, this represents an extra
24 % of observations (Table 3: see column FN). Neverthe-
less, landslides identified only in the field were not consid-
ered in the analysis to avoid biases due to overrepresentation.
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Figure 5. Landslide (LS) area characteristics. (a, c) Landslide frequency–area distributions for each landslide category. (b) Boxplots showing
the distribution of landslide area for each landslide category. Boxplots show the lower and upper quartiles and median. The whiskers of each
box represent 1.5 times the interquartile range. The average area of the landslides (red dots) is provided for each boxplot, and the outliers
beyond whiskers are shown as dots. The number of landslides in each category is shown in brackets.

Table 2. Typology, size properties and identification methods of the inventoried landslides (LSs). The percentages of landslides linked to
the TanDEM-X hillshade images (percent of LSs in TanDEM-X) represent landslides that could not be very well identified in Google Earth
alone.

Max Min Average Standard Percent of LSs Percent
Landslide Number Percent Percent area area area deviation in Google of LSs in
type of LSs of LSs of LS area (ha) (m2) (ha) (ha) Earth TanDEM-X

Deep-seated (old) 1243 45.5 93.0 426.4 604 12.6 26.8 94.9 5.1
Deep-seated (recent) 159 5.8 2.9 28.9 210 3.1 5.4 97.5 2.5
Shallow 1103 40.4 2.7 53.8 16 0.4 2.4 100 0
Mining 152 5.6 1.2 13.4 99 1.4 1.9 100 0
Road 73 2.7 0.1 2.0 149 0.3 0.3 100 0

All landslides 2730 100 100 6.2 97.5 2.5

Each debris flow is connected to up to hundreds of shal-
low landslides that act as source areas. A clear distinction
was made between these sources and the debris flow path
and deposition areas (Fig. 4a). Out of a total of the 184 de-
bris flows identified from the images, 90 with a length-to-
width ratio of < 50 were excluded from the analysis since
they show greater similarities to debris-rich floods than to
the other landslides present in the region (Malamud et al.,
2004). Nevertheless, the shallow landslides acting as source
areas were kept in the analysis. Also, 22 very large, old, deep-
seated landslides were excluded from the analysis because
they have complex main scarps where it is difficult to de-
termine the pixels that best represent the natural conditions
of occurrence. Overall, from the 2730 landslides identified
from the images, 2618 landslides were used for the subse-
quent analysis.

Except for the recent deep-seated and mining landslides,
the inverse gamma (0) distribution fits the distributions for
the other categories of the inventory well (Fig. 5a, c), which
supports their use for further susceptibility analysis. The
Wilcoxon rank comparison test confirms significant statisti-
cal differences (p value< 0.05) among the area distributions
(Fig. 5b).

A majority (72 %) of the shallow landslides is found in
areas of forest loss (Fig. 6). The landslides in the per-
manent anthropogenic environment have the largest mean
area, followed by the landslides in permanent forest and
the landslides in areas of forest loss. In forest gain zones,
landslides are on average the smallest. The Wilcoxon rank
comparison test confirms significant statistical differences
(p value< 0.05) among the landslide area distributions. The
same differences are also confirmed for the landslide slope
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Table 3. Field-based validation of the landslides (LSs) inventoried from the image analysis. True positive (TP): landslides that were mapped
in the images and validated in the field. False positive (FP): landslides that were mapped in the images but not validated in the field. False
negative (FN): landslides that were identified solely in the field. Precision: TP/(TP+TN).

Number of LSs mapped in the Total number of
Landslide type images and checked in the field TP FP FN Precision (%) LSs viewed in the field

Deep-seated (old) 248 239 9 60 96 308
Deep-seated (recent) 47 44 3 4 94 51
Shallow 426 420 6 55 99 481
Mining 15 9 6 2 60 17
Road 50 45 5 5 90 55

Total 786 757 29 126 96 912

distribution (Fig. 6c). In permanent-forest areas, shallow
landslides occur on steeper slopes compared to shallow land-
slides in anthropogenic environments (Fig. 6c). The analy-
sis of the completeness of the inventory (Fig. 6b, d) shows
that an acceptable distribution emerges for each category of
shallow landslides except for the landslide inventory in the
permanent forest minus event (Fig. 6b).

4.2 Landslide susceptibility and distribution analysis

The Pearson χ2 tests confirm the association between the de-
pendent variable and each predictor variable at a 95 % level
of confidence. There was no multicollinearity between the
predictors (VIF> 2) retained for this study.

Depicker et al. (2020) assessed the impacts of the size of
the landslide training dataset to calibrate a landslide suscepti-
bility model. They showed that the quality of a susceptibility
assessment is questionable if the number of landslides is too
small. In view of the low number of recent deep-seated, min-
ing and road landslides in the present study (Table 3), we
did not calibrate susceptibility models from these three types
of landslides. Instead, we tested these inventories against the
two susceptibility models computed from the shallow and/or
old deep-seated landslide datasets, from which we could de-
rive prediction rates (Fig. 7).

The univariate AUC values are all above 0.5 (Table 4). All
predictors considered for both categories of landslides were
thus considered in the multivariate logistic regression mod-
els. The two susceptibility models of shallow and old deep-
seated landslides show similar AUC and prediction rates
(Fig. 7). At first sight, both models have spatial similarities of
high susceptibility on the eastern part of the region, while the
entire western part is less susceptible (Fig. 7a, b). However,
when we go into detail, the spatial patterns of the susceptibil-
ity values of the two models are quite different as it reflects
the differences in the importance of the predictors included
in the assessment (Tables 4, 5).

Forest loss has a large influence on the occurrence of shal-
low landslides as deforestation increases the odds of landslid-
ing by a factor of 2.5 (Tables 4, 5). However, anthropogenic

environments appear to be less landslide-prone than perma-
nent forest. Elevation and slope angle are similarly impor-
tant for the prediction of both types of landslides (Table 4)
but have a slightly larger impact on the odds of deep-seated
landsliding that on the odds of shallow landsliding (Table 5).
Slope aspect has a greater impact on the occurrence of shal-
low landslides than on that of old deep-seated landslides. It
appears that the plan curvature reduces the occurrence of
shallow landslides, while it favours the occurrence of old
deep-seated landslides. The effect of lithology is also dif-
ferent for shallow and deep-seated landslides. For shallow
landslides, the gneiss and mica schists are most landslide-
prone, and the lowest susceptibility is associated with black
shales, tillite and old basalts. For deep-seated landslides,
black shales, tillite and old basalts favour landslides, while
gneiss and mica schists do not. Distance to roads and dis-
tance to faults have a significant but rather limited impact on
shallow and old deep-seated landslides, respectively.

Mining and road landslides are poorly predicted using the
shallow-landslide model (Fig. 7c). The prediction of road and
mining landslides using the deep-seated model is also poor,
although less problematic for the mining landslides (Fig. 7d).
Recent deep-seated landslides are reasonably well predicted
using the old deep-seated landslide model, which validates
to some extent the multi-temporal predicting performance of
the assessment.

Slope angle is an important driver for shallow and old
deep-seated landslides (Fig. 8a, b). Both types of landslides
are favoured by slopes angles of > 20–25◦. We observe a
trend in the landscape of increasing slopes and forest loss and
decreasing forest cover with increasing elevation (Fig. 8c).
The decrease in forest cover at high elevations is also asso-
ciated with a natural change of the vegetation: bamboo veg-
etation is found at 2300–2600 m a.s.l., and subalpine vege-
tation such as ferns occurs at 2400–3300 m a.s.l. (Mokoso
et al., 2013; Cirimwami et al., 2019). At higher elevations
(> 2000 m), shallow landslides occur more frequently, and
this can probably be explained by a cumulative effect of
forest loss, steeper slopes and increased orographic rainfall
associated with these elevations (Fig. 8c). The positive fre-
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Figure 6. Shallow-landslide characteristics and forest cover dynamics. (a, c) Boxplots showing the distribution of landslide area and landslide
slope, respectively, for each land cover class. A detailed description of boxplots is provided in Fig. 5. (b, d) Shallow-landslide frequency–area
distributions for each land cover class.

quency ratio in the 1400–1700 m elevation class is related to
the area of permanent anthropogenic environment. This zone
is characterised by low forest cover and relatively low slopes
(Fig. 8c). Deep-seated landslides are also favoured by steeper
slopes and higher elevations. Regarding the dynamics of for-
est cover (Fig. 8e), the occurrence of shallow landslides is
favoured in the deforested areas.

5 Discussion

5.1 Landslide types and completeness of the inventory

Despite its high precision and the fact that with more than
2700 mapped landslides we have identified more than 3 times
as many features as in the inventory of Depicker et al. (2020),
we are aware that the dataset is still incomplete. This is par-
ticularly the case for the shallow landslides because their in-
ventory covers a maximum period of 13 years. Furthermore,
their scars can quickly be altered by natural vegetation re-
growth, land reclamation and erosion (Malamud et al., 2004;
Van Den Eeckhaut et al., 2007; Kubwimana et al., 2021; De-
witte et al., 2022); although, here, since we have used several
image covers from Google Earth, this issue is nuanced. In

addition, small landslides frequently happen unnoticed at the
resolution of the satellite images (Guzzetti et al., 2012). Fi-
nally, field validation showed that a significant proportion of
old deep-seated landslides can be missed from image anal-
ysis (Table 3). This is because recognising old deep-seated
landslides may not be easy, particularly in forest areas (Mala-
mud et al., 2004). While building the inventory, we remained
conservative and mapped only the features for which we had
high confidence. As the protocol for landslide identification
over the whole region was uniform and the number of iden-
tified landslides was relatively important, we trust that the
inventory is reliable and representative enough for the analy-
sis.

The frequency–area distributions of all landslides cate-
gories (Fig. 5a, c), with the exception of recent deep-seated
and mining landslides, are similar to what has been observed
in other parts of the world (e.g. Malamud et al., 2004; Guns
and Vanacker, 2014; Jacobs et al., 2017). For the recent deep-
seated landslides, an overrepresentation is noticed at the level
of the smallest landslides and the rollover is absent. Since the
spectral signature of these landslides is pronounced, we can-
not invoke here a problem of subjectivity in the mapping. Ad-
ditionally, we can give a high trust score in the completeness
of the inventory as evidenced by field validation that showed
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Figure 7. Landslide susceptibility models and prediction rates. (a) Shallow landslides (AUC: 0.78). (b) Old deep-seated landslides (AUC:
0.82). (c) Prediction rate curves for shallow, mining and road landslides. (d) Prediction rate curves for old deep-seated, recent deep-seated,
mining and road landslides. The red-shaded area in panels (c) and (d) represents the 10 % of the region with the highest landslide susceptibility
values.

that almost no landslides were missed (Table 3). Therefore,
we posit that this divergence in size is related to a lower in-
fluence of successive slope failure in the increase in land-
slide area through time; in other words, recent landslides did
not have the time to grow (Tanyaş et al., 2018). This pro-
cess of successive failures has been well documented for
the Ikoma landslide, south of Bukavu (Fig. 1b; Dille et al.,
2019). The distribution of the mining landslides is irregular
and different from what is typically observed, with a rollover
that is flattened and a sudden increase in the frequency of
the smallest slope failures. Similarly to the inventory of the
recent deep-seated landslides, the completeness and the re-

liability of the mapped features cannot be questioned much.
We suggest that this unusual area distribution is the result
of the human-induced alteration of the environmental condi-
tions (see Sect. 4.4). To our knowledge, there are apparently
no similar studies that have been carried out on artificial min-
ing slopes. Further investigations on other cases would be
needed to verify our hypothesis.

The presence of a rollover in the frequency–area distri-
bution of the shallow landslides in the anthropogenic envi-
ronment (Fig. 6b, d), compared to tropical mountains (Guns
and Vanacker, 2014), is in opposition to what we could
have expected considering the study by Van Den Eeckhaut
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Table 4. Relative importance of the predictors of the logistic regression models for shallow and old deep-seated landslides based on AUCi
(ranked in descending order).

Shallow landslides Old deep-seated landslides

Predictor AUCi Predictor AUCi
Forest loss 63 Profile curvature 65.7
Elevation 61.5 Elevation 65.3
Slope angle 60.1 Distance to faults 64.2
Distance to roads 59.7 Slope angle 64
Pelites and quartzopelites 58.9 TWI 63.8
Permanent anthropogenic environment 55.9 Plan curvature 59.5
TWI 55.3 Pelites and quartzopelites 54.5
Plan curvature 53.1 South 52.4
East 52.2 Northeast 52
Southeast 52.2 North 51.6
Black shales and tillite 51.8 East 51.1
Old basalts 51.8 Southeast 50.7
North 51.8 Granites (mica and leucogranites) 50.7
Granites (mica and leucogranites) 50.8 Old basalts 50.5
Southwest 50.7 Gneiss and mica schists 50.5
Gneiss and mica schists 50.6 Southwest 50.3
South 50.6 Black shales and tillite 50.3
Profile curvature 50.4 Northwest 50.2
Northeast 50.4
Northwest 50.1
Forest gain ∗

∗ Only four landslides are present in this category.

et al. (2007). This study was also conducted in a densely
populated rural environment and also relied on an inventory
that is not associated with one single landslide-triggering
event. They did not find a positive power-law relation for
the smaller landslides which are separated from the larger
landslides by a rollover. This difference probably lies in the
fact that our study area is much more landslide-prone. The
research by Van Den Eeckhaut et al. (2007) was indeed car-
ried out in a hilly region of Belgium where the temperate
climate is much less favourable to the yearly occurrence of
shallow landslides. Furthermore, the fact that our inventory
covers a smaller time period than that of Van Den Eeckhaut
et al. (2007); that our region is not altered by mechanised
farming; and that human activities such as works associated
with building and road construction and drainage systems are
much less present, i.e. factors that are highlighted as causes
of landslides in Belgium, are issues that can also be invoked
to explain this divergence in the frequency–area distribution
of shallow landslides.

Under permanent forest, we do not observe a rollover point
in the shallow-landslide distribution (Fig. 6b). We hypoth-
esise that the smallest landslides may be hidden under the
canopy and therefore less visible on satellite images. A sec-
ond explanation is that the presence of trees and their roots
increases slope stability and therefore the minimal critical
area for landsliding (Milledge et al., 2014).

5.2 Drivers of deep-seated landslides

The old deep-seated landslide susceptibility model is the first
model proposed for the region that focuses only on deep-
seated processes. The model shows a good quantitative pre-
diction performance, both in terms of AUC and prediction
rate. The model shows that terrain morphology and seismic
activity seem to play a dominant role in deep-seated landslide
distribution in the study area. The frequency ratio analysis
(Fig. 8b, d) further supports this as it highlights the associ-
ation of landslides with steep slopes and higher elevations,
i.e. in topographic contexts nearer to the ridge crests that are
known to amplify seismic shaking (Meunier et al., 2008).
The role of elevation as a driver of more humid conditions
should, however, not be ignored as rainfall is also known to
trigger deep-seated landslides (LaHusen et al., 2020). Also,
the role of the long-term weathering of the landscape and the
occurrence of non-triggered landslides should not be under-
estimated (Dille et al., 2019). Lithology is of lesser impor-
tance in our study area, which is in agreement with the find-
ings of Depicker et al. (2021b) that show that at the regional
scale, the various lithologies have similar rock strength prop-
erties. However, with better defined lithological information,
local specificities would certainly appear (Kubwimana et al.,
2021). As we also show that the topography and the presence
of faults play a role, it is another factor that can explain that
the influence of lithology is somehow limited.
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Table 5. Results of the logistic regression (LR) models for shallow landslides and old deep-seated landslides.

Shallow landslides Old deep-seated landslides

AUC 0.78 0.82 Step

Predictor variable LR coef. Odds ratio LR coef. Odds ratio δi

(Intercept) −3.560 ∗∗∗
−1.661 ∗∗∗

Elevation 0.001 ∗∗∗ 1.857 0.002 ∗∗∗ 2.535 500

Slope aspect Northwest 0.842 ∗ 2.321 −0.366 0.694 1
West Ref. – Ref. –
Southwest 0.674 ∗ 1.962 −0.232 0.793 1
South 0.630 ∗ 1.878 0.032 1.033 1
Southeast 0.599 1.820 −0.345 0.708 1
East 0.513 1.670 −0.578 ∗∗ 0.561 1
Northeast 0.622 1.863 −0.897 ∗∗∗ 0.408 1
North 0.481 1.618 −0.831 ∗∗∗ 0.436 1

Plan curvature −0.272 ∗ 0.580 0.166 ∗∗∗ 1.394 2
Profile curvature −0.190 0.999 −0.463 ∗∗∗ 0.998 0.005
Slope angle 0.050 ∗∗∗ 1.649 0.033 ∗∗∗ 1.391 10
Topographic wetness index 0.093 1.000 −0.281 ∗∗∗ 1.000 0.001

Lithology Old basalts −0.753 – 0.471 0.201 1.223 1
Black shales and tillite −1.207 ∗∗∗ 0.299 −1.358 ∗∗∗ 0.257 1
Granite (mica and leucogranites) −17.026 – 0.000 −2.126 ∗∗∗ 0.119 1

Granitic rocks (rhyolite) Ref. Ref.
Pelites and quartzopelites −1.274 ∗∗∗ 0.280 0.155 1.168 1
Gneiss and mica schists 0.506 1.659 −0.468 0.626 1

Distance to roads 0.000 ∗∗∗ 0.931 No – 500
Distance to faults No – 0.000 ∗∗∗ 0.914 500

Forest cover dynamics Permanent forest Ref. – No –
Forest loss 0.922 ∗∗∗ 2.514 1
Gain forest No – No –
Permanent anthropogenic −0.159 0.853 No – 1
environment

No: variable not included in the logistic regression model. Ref.: reference category of the dummy variable. Coefficient included in the logistic regression model: ∗ p value< 0.05, ∗∗
p value< 0.01, ∗∗∗ p value< 0.001.

The lower prediction rate of the recent deep-seated land-
slides using the old deep-seated landslide model could be re-
lated to the fact that the observations are made on a period
that is too short to apprehend the full panel of environmen-
tal conditions that led to old deep-seated landslides. For ex-
ample, no earthquake-induced recent deep-seated landslides
were observed (Dewitte et al., 2021), whereas seismicity is
an important component of the old deep-seated landslide
model. In addition, the climatic and seismic conditions have
evolved over the past tens of thousands of years (Felton et
al., 2007; Wassmer et al., 2013; Ross et al., 2014; Smets
et al., 2016). For example, the region experienced an abrupt
shift from drier conditions to more humid conditions around
13 000 BP (Felton et al., 2007; Wassmer et al., 2013). In ad-
dition, at about 10 000 BP, Lake Kivu water highstands were
∼ 100 m above the current level, which could have triggered
few large landslides (Ross et al., 2014; Dewitte et al., 2021).
This change in the lake level was due to not only a shift in the

climatic conditions but also the formation of the Virunga Vol-
cano Province that created a dam on the upstream part of the
rift basin that used to drain northwards (Fig. 1b; Haberyan
and Hecky, 1987). During that period of volcano formation,
the regional geodynamics and the seismicity pattern were
different (Smets et al., 2016). Hence a large part of the old
deep-seated landslides may have been triggered under differ-
ent conditions.

Old and recent deep-seated landslides differ also in terms
of size (Fig. 4). There have not been any major events dur-
ing the past 60 years that caused large landslides compara-
ble to the largest old deep-seated landslides (area of 106 m2).
We identify five possible factors to explain this difference.
First, our window of observation is too narrow to apprehend
the impact of forcing events of high-magnitude such as large
earthquakes (Marc et al., 2019). Second, the past environ-
mental conditions may have been more favourable to large
slope failures. A third factor explaining the size difference
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Figure 8. Frequency distribution for shallow and deep-seated landslides in a function of key predictor variables. Panels (c), (d) and (e) allow
for a multivariate comparison of the predictors. The corresponding frequency ratio is shown for each class above the vertical bars. The green,
orange and red curves indicate the proportion of forest cover, forest loss and slope> 25◦, respectively, in the different classes of the predictor
variables.

between old and recent deep-seated processes is that larger
landslides are less frequent but have a longer-lived mor-
phology legacy; therefore, smaller old deep-seated landslides
may no longer be visible. The fourth factor is that old land-
slides have a size that is the legacy of a history of phases of
slope deformation and not one single slope failure (Tanyaş et
al., 2018). Fifth, amalgamation must not be excluded (Marc
and Hovius, 2015), especially for the oldest features. Over-
all, our current knowledge does not allow for giving more
credit to one factor in particular. Common sense would as-
sume that the difference in landslide size is the reflection of
a combination of factors.

5.3 Drivers of shallow landslides

Rainfall is the trigger of the shallow landslides that we have
identified in this study, which is in agreement with the other

studies in the region (Dewitte et al., 2021; Kubwimana et
al., 2021). The spatial distribution of shallow landslides dif-
fers from the distribution of deep-seated landslides. This is
mainly due to the anthropogenic factors such as deforestation
that influence shallow processes (Table 4). The regional sus-
ceptibility model also indicates that deforestation is the most
important factor in their occurrence (Table 5). Similarly, the
analysis of frequency ratios shows that landslides dispropor-
tionately occur within areas that were deforested in the past
60 years, demonstrating the role of the forest in slope stabil-
isation (Grima et al., 2020).

Shallow landslides in forest loss areas (Fig. 6a, b) have,
on average, a smaller size compared to landslides in forest.
This observation is in line with the findings of Depicker et
al. (2021b) and is attributed to the decrease in regolith co-
hesion by reduced root cohesion and evapotranspiration due
to forest loss (Glade, 2003; Masi et al., 2021), which allows
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for a smaller minimum critical area for landsliding (Vanacker
et al., 2003; Milledge et al., 2014). In short, human-induced
land cover change is associated with an increase in the num-
ber of landslides and a shift of the frequency–area distribu-
tion towards smaller landslides (Guns and Vanacker, 2014).

In permanent anthropogenic environments (Fig. 6a, c),
shallow landslides are less frequent and larger and occur on
less steep slopes as compared to shallow landslides in for-
est. Firstly, the steepest slopes in the anthropogenic environ-
ments have been subject to increased landslide erosion the
first few years after the original forest cover was removed
(prior to 1955–1958) (Depicker et al., 2021b). As a result,
we can assume that steep slopes in anthropogenic environ-
ments have less regolith available for landsliding compared
to similar steep slopes in permanent-forest areas. This pro-
cess of regolith depletion is further exacerbated in cropland.
Wilken et al. (2021) have measured in the region that erosion
in cropland sites can reach up to about 40 cm in 55 years.
Similarly, Heri-Kazi and Bielders (2021a) measured mean
erosion rates of the order of 11 mm yr−1 on cropland. Re-
golith erosion has therefore the consequence of reducing the
spatial extent of areas where landslides can occur. A second
process that may explain the landslide pattern in the anthro-
pogenic environments is that, in parallel to regolith erosion,
one also has sedimentation and the formation of colluvium
(Wilken et al., 2021), which results in local accumulation
of material. The material forms a loose sedimentary deposit
usually in places with lower slope angles. This could be ex-
tra material available for the formation of landslides, with
the colluvium supply and a minimum depth of material being
recognised as playing a key role in the occurrence of shallow
landslides (Parker et al., 2016). Hence, we have less areas
available for landslides but a concentration of the susceptible
places. A third explanation is probably related to soil man-
agement practices that influence erosion and water infiltra-
tion. In the region, usually on the less steep terrain, drainage
ditches that favour water infiltration and hence an increase in
porewater pressure are widely applied by farmers (Heri-Kazi
and Bielders, 2021b).

5.4 Drivers of mining landslides and road landslides

The poor prediction rates of mining and road landslides when
compared to the two shallow and deep-seated susceptibility
models (Fig. 7) show that they respond to different environ-
mental factors. Road construction and mining activities are
commonly associated with the presence of slope cuts and an
increase in slope angle. These altered local topographic con-
ditions cannot be constrained in the covariates derived from
the SRTM or similar available products. In addition, the dis-
turbances induced by roads and mining activities are not lim-
ited to the sole change of slope angle conditions. For exam-
ple, this also implies changes in water runoff and infiltration,
debuttressing, presence of fills and eventual overloading, and
excess stress from engine/digging, i.e. conditions that can in-

fluence the size and frequency characteristics of landslides
(Brenning et al., 2015; Arca et al., 2018; Froude and Petley,
2018; McAdoo et al., 2018; Vuillez et al., 2018; Tanyaş et
al., 2022).

Road landslides are mostly shallow. While it is obvious
that roads create favourable conditions for the initiation of
landslides, as observed not only in the region (e.g. Kub-
wimana et al., 2021) but also worldwide (Froude and Pet-
ley, 2018; Sidle et al., 2006; Brenning et al., 2015; Arca et
al., 2018; McAdoo et al., 2018; Vuillez et al., 2018; Muñoz-
Torrero Manchado et al., 2021; Tanyaş et al., 2022), an accu-
rate spatio-temporal regional pattern of these human-induced
slope failures cannot be assessed here. A substantial propor-
tion of road landslides can only be observed in the field (Ta-
ble 3). In addition, landslides along roads can easily disap-
pear due to maintenance works. Furthermore, many of the
main roads were already present in the 1950s, with their cur-
rent impact therefore being altered.

Overall, mining conditions seem to lead to landslides
whose smallest features are more frequent than what would
occur under natural conditions as attested in the frequency–
area distribution (see Sect. 4.2). The area of mining land-
slides is significantly larger than that of road landslides, and
their regional distribution is slightly more in agreement with
the characteristics of deep-seated landslides (Fig. 7d), which
is logical as mining activities are related to the lithological
characteristics of the landscape, i.e. a cause that typically has
more influence on deeper processes (Migoń, 2013; Dille et
al., 2019).

Considering the recent development of the mining activi-
ties in the region (Butsic et al., 2015; Tyukavina et al., 2018;
Musumba Teso et al., 2019), we can assume with confidence
that the associated landslides represent slope instabilities that
have occurred over a period of about 20 years, whereas the
recent deep-seated landslides represent slope failures that
have occurred over the last 60 years. The distribution of the
mining landslides is also restricted spatially to some litholo-
gies. With these specificities in mind and the fact that the
number of inventoried mining and recent deep-seated land-
slides is relatively similar, 152 and 159 (Table 2), respec-
tively, this study confirms that mining activities increase the
odds of landsliding. It has an implication not only in terms of
susceptibility assessment but also in assessing the population
at risk, knowing that mined sites are populated. This is to be
put in parallel with the findings of Depicker et al. (2021a) that
show that the risk of shallow landslides has increased sig-
nificantly in the region during the last decades in the places
where mining activities are found due, notably, to an increase
in population.

6 Conclusions

The use of several sources of data allowed for building a very
detailed and comprehensive landslide inventory in time and
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space for the region, a source of information unprecedented
in such environments. This inventory enabled the grouping
of landslides into five categories: old and recent deep-seated
landslides, shallow landslides, mining landslides, and road
landslides. Among deep-seated landslides, historical aerial
photographs from the 1950s were an added value in the
sense that they were used for differentiating between old
(pre-1955) and recent (post-1955) slope processes. We de-
duce the differences in the driving factors and area distribu-
tion for old and recent deep-seated landslides, suggesting that
factors of landslide occurrence are either different or change
over time depending on geodynamic and/or climatic condi-
tions. The role of anthropogenic factors has been established
in the occurrence of shallow landslides. Deforestation ini-
tially increases landsliding, but in the long term, when forest
is permanently converted into agricultural land, landslide fre-
quency appears to be lower compared to permanent-forest
lands. The impact of forest, forest cover changes and soil
management practices depends on topographic conditions
and regolith availability. The factors of occurrence of mining
landslides significantly increase landsliding in areas that, un-
der natural conditions, would be less prone to slope failures.
Our analysis shows that the importance of human activities
must be considered when investigating landslide occurrence
in regions under anthropogenic pressure. This is particularly
needed when one sees that the changing spatio-temporal pat-
terns of landslides associated with these activities tend to fur-
ther exacerbate the risks that the population face.

On a more technical/methodological note, our study also
demonstrates the importance of considering the timing and
the depth of landslides as well as the differentiation between
mining and road landslides. While several well-known land-
slide classification systems are used at the international level
(Hungr et al., 2014; Sidle and Bogaard, 2016), these systems
are not framed around the combination of the differentiation
criteria that are used in this research. Our study does pro-
pose a unique effort at classifying landslide types in order to
investigate them in the context of the Anthropocene. We be-
lieve that our mapping effort and classification protocol is the
most adapted (based on field observation and understanding
of the landscape) in this case to address the problem of nat-
ural and human-induced landslides in the region. However,
it certainly needs improvement to be used in a more univer-
sal way.
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